Well-posedness of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows
نویسندگان
چکیده
منابع مشابه
Well-Posedness of Transonic Characteristic Discontinuities in Two-Dimensional Steady Compressible Euler Flows
In our previous work, we have established the existence of transonic characteristic discontinuities separating supersonic flows from a static gas in two-dimensional steady compressible Euler flows under a perturbation with small total variation of the incoming supersonic flow over a solid right-wedge. It is a free boundary problem in Eulerian coordinates and, across the free boundary (character...
متن کاملWell-posedness for Two-dimensional Steady Supersonic Euler Flows past a Lipschitz Wedge
For a supersonic Euler flow past a straight wedge whose vertex angle is less than the extreme angle, there exists a shock-front emanating from the wedge vertex, and the shock-front is usually strong especially when the vertex angle of the wedge is large. In this paper, we establish the L wellposedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge whose boundary slope ...
متن کاملA Remark on Determination of Transonic Shocks in Divergent Nozzles for Steady Compressible Euler Flows
In this paper we construct a class of transonic shock in a divergent nozzle which is a part of an angular sector (for two-dimensional case) or a cone (for three-dimensional case) which does not contain the vertex. The state of the compressible flow depends only on the distance from the vertex of the angular sector or the cone. It is supersonic at the entrance, while for appropriately given larg...
متن کاملWell-posedness of compressible Euler equations in a physical vacuum
An important problem in gas and fluid dynamics is to understand the behavior of vacuum states, namely the behavior of the system in the presence of vacuum. In particular, physical vacuum, in which the boundary moves with a nontrivial finite normal acceleration, naturally arises in the study of the motion of gaseous stars or shallow water. Despite its importance, there are only few mathematical ...
متن کاملMaximal dissipation and well-posedness for the compressible Euler system
We discuss the problem of well-posedness of the compressible (barotropic) Euler system in the framework of weak solutions. The principle of maximal dissipation introduced by C.M. Dafermos is adapted and combined with the concept of admissible weak solutions. We use the method of convex integration in the spirit of the recent work of C.DeLellis and L.Székelyhidi to show various counterexamples t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Zeitschrift für angewandte Mathematik und Physik
سال: 2013
ISSN: 0044-2275,1420-9039
DOI: 10.1007/s00033-013-0312-6