Well-posedness of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-Posedness of Transonic Characteristic Discontinuities in Two-Dimensional Steady Compressible Euler Flows

In our previous work, we have established the existence of transonic characteristic discontinuities separating supersonic flows from a static gas in two-dimensional steady compressible Euler flows under a perturbation with small total variation of the incoming supersonic flow over a solid right-wedge. It is a free boundary problem in Eulerian coordinates and, across the free boundary (character...

متن کامل

Well-posedness for Two-dimensional Steady Supersonic Euler Flows past a Lipschitz Wedge

For a supersonic Euler flow past a straight wedge whose vertex angle is less than the extreme angle, there exists a shock-front emanating from the wedge vertex, and the shock-front is usually strong especially when the vertex angle of the wedge is large. In this paper, we establish the L wellposedness for two-dimensional steady supersonic Euler flows past a Lipschitz wedge whose boundary slope ...

متن کامل

A Remark on Determination of Transonic Shocks in Divergent Nozzles for Steady Compressible Euler Flows

In this paper we construct a class of transonic shock in a divergent nozzle which is a part of an angular sector (for two-dimensional case) or a cone (for three-dimensional case) which does not contain the vertex. The state of the compressible flow depends only on the distance from the vertex of the angular sector or the cone. It is supersonic at the entrance, while for appropriately given larg...

متن کامل

Well-posedness of compressible Euler equations in a physical vacuum

An important problem in gas and fluid dynamics is to understand the behavior of vacuum states, namely the behavior of the system in the presence of vacuum. In particular, physical vacuum, in which the boundary moves with a nontrivial finite normal acceleration, naturally arises in the study of the motion of gaseous stars or shallow water. Despite its importance, there are only few mathematical ...

متن کامل

Maximal dissipation and well-posedness for the compressible Euler system

We discuss the problem of well-posedness of the compressible (barotropic) Euler system in the framework of weak solutions. The principle of maximal dissipation introduced by C.M. Dafermos is adapted and combined with the concept of admissible weak solutions. We use the method of convex integration in the spirit of the recent work of C.DeLellis and L.Székelyhidi to show various counterexamples t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Zeitschrift für angewandte Mathematik und Physik

سال: 2013

ISSN: 0044-2275,1420-9039

DOI: 10.1007/s00033-013-0312-6